翻訳と辞書
Words near each other
・ Ptarmigan Lake (Glacier County, Montana)
・ Ptarmigan Lake (Ontario)
・ Ptarmigan Pass
・ Ptarmigan Pass (Front Range)
・ Ptarmigan Pass (Sawatch Range)
・ Ptarmigan Peak
・ Ptarmigan Peak (Alaska)
・ Ptarmigan Peak (Alberta)
・ Ptarmigan Peak (Colorado)
・ Ptarmigan Peak Wilderness
・ Ptarmigan Traverse
・ Ptarmigan Tunnel
・ Ptarmus
・ PtaRNA1
・ PTAS
PTAS reduction
・ Ptasie mleczko
・ Ptaszki
・ Ptaszkowa
・ Ptaszkowice
・ Ptaszkowo, Greater Poland Voivodeship
・ Ptaszkowo, West Pomeranian Voivodeship
・ Ptaszków
・ Ptaszniki, Gdańsk County
・ PTAT Systems
・ PTAT-1
・ PTB
・ PTBC Storm English Open
・ PTBP1
・ PTBP2


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

PTAS reduction : ウィキペディア英語版
PTAS reduction
In computational complexity theory, a PTAS reduction is an approximation-preserving reduction that is often used to perform reductions between solutions to optimization problems. It preserves the property that a problem has a polynomial time approximation scheme (PTAS) and is used to define completeness for certain classes of optimization problems such as APX. Notationally, if there is a PTAS reduction from a problem A to a problem B, we write \text \leq_.
With ordinary polynomial-time many-one reductions, if we can describe a reduction from a problem A to a problem B, then any polynomial-time solution for B can be composed with that reduction to obtain a polynomial-time solution for the problem A. Similarly, our goal in defining PTAS reductions is so that given a PTAS reduction from an optimization problem A to a problem B, a PTAS for B can be composed with the reduction to obtain a PTAS for the problem A.
Formally, we define a PTAS reduction from A to B using three polynomial-time computable functions, ''f'', ''g'', and ''α'', with the following properties:
* ''f'' maps instances of problem A to instances of problem B.
* ''g'' takes an instance ''x'' of problem A, an approximate solution to the corresponding problem f(x) in B, and an error parameter ε and produces an approximate solution to ''x''.
* ''α'' maps error parameters for solutions to instances of problem A to error parameters for solutions to problem B.
* If the solution ''y'' to f(x) (an instance of problem B) is at most 1 + \alpha(\epsilon) times worse than the optimal solution, then the corresponding solution g(x,y,\epsilon) to ''x'' (an instance of problem A) is at most 1 + \epsilon times worse than the optimal solution.
==Properties==

From the definition it is straightforward to show that:
* \text \leq_ and \text \in \text \implies \text \in \text
* \text \leq_ and \text \not\in \text \implies \text \not\in \text
L-reductions imply PTAS reductions. As a result, one may show the existence of a PTAS reduction via a L-reduction instead.
PTAS reductions are used to define completeness in APX, the class of optimization problems with constant-factor approximation algorithms.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「PTAS reduction」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.